Поделки из оптоволоконного кабеля своими руками. Делаем простой светодиод своими руками

Те, кто занимается самостоятельным изготовлением оригинальных передних фар или задних фонарей рано или поздно сталкивается с проблемой, какой использовать рассеиватель для светодиодов? Если раньше по этому поводу можно было не волноваться, то начиная с 2014 года, когда крупные автоконцерны Мерседес, БМВ, Ауди анонсировали свои очередные модели автомобилей, то многих заинтересовала их оптика. Теперь свет в них был равномерно рассеян, оптика при этом выглядела стильно и красиво. Многие захотели иметь в своем распоряжении близкие по свечению фонари.

Как изготовить рассеиватель для светодиодов своими руками

Данный способ, на мой взгляд, достаточно эффективный, так как позволяет изготовить рассеиватель для светодиодов любой формы, размера и светопропускаемости.

-Для его изготовления нам понадобится ювелирная эпоксидная смола ПЭО-510КЭ-20/0, так как она имеет кристальную чистоту и со временем не желтеет.

В качестве рассеивающего элемента, нам понадобится порошок Диффузант ДФ-151. Он отлично растворяется в эпоксидной смоле, придавая тот самый молочный оттенок и нереально качественные рассеивающие свойства при застывании.

Также, для данной смолы существует огромное количество красителей, любых цветов, флуоресцентные и фосфорные.

Ну и непосредственно сама форма для отливки, обычно я использую силикон для молдов или для отливки.

Вот несколько образцов, где я экспериментировал с добавлением Диффузанта ДФ-151, как видно, качество рассеивания можно легко регулировать и добиться необходимого результата. Соотношение размешивания эпоксидной смолы и Диффузанта, 100 к 1.
Именно этим способом я создавал .


А вот как рассеивает свет «образец» с подключенными светодиодами. Рассеивание идеальное, точек от светодиодов не видно с любой стороны и ракурса.


Эксперименты оказались крайне удачными, поэтому я пошел дальше и сделал полноразмерный рассеиватель для внедрения в фару, вот так он светит на максимальной яркости, очень ярко и равномерно.

Другие способы рассеивания света от светодиодов

Следующий способ, это использование молочного акрила толщиной от 2 до 5 мм. В основном используют оргстекло 3 мм. Оно отлично рассеивает свет от светодиода, но главным его недостатком является то, что молочное оргстекло очень сильно поглощает свет, из-за чего яркость падает на 30-50 %.

Также стоит помнить, что если у вас нет фрезерного станка, то самостоятельное придание формы оргстеклу имеет определенные ограничения. Гнуть его можно промышленным феном, но не вовсе стороны. Купить его можно в любом рекламном агентстве.


Третий способ, это использование рассеивающих элементов «Микропризма» от потолочных светильников. Главная их особенность, это текстура, напоминающая маленькие пирамидки, которые отлично преломляют свет и соответственно рассеивают его, приблизительная технология используется в фонарях Бмв, Мерседесов, Ауди, там используются световоды с насечками либо текстурой. Но если у вас мощные светодиоды, то микропризма вам не поможет, должным образом свет она рассеять не сможет.

Оптоволоконная система освещения для бани - одна из наиболее эффективных, долговечных и безопасных. Выбрать комплектующие для ее установки и выполнить монтаж вполне по силам каждому хозяину. Наши рекомендации помогут разобраться в процессе.

Содержание:

Организация освещения в сауне с помощью оптического волокна в последнее время приобретает все большую популярность. Такие оптоволоконные светильники для бани намного функциональнее, безопаснее и экономичнее, чем традиционные источники света. Они оптимально подходят для установки в парилке, моечном отделении и вспомогательных помещениях.

Особенности оптоволоконного освещения в бане


Благодаря высоким эксплуатационным и техническим характеристикам, эти светильники часто устанавливаются в парилках. Среди основных преимуществ этих конструкций выделяют:
  1. Термоустойчивость . Оптоволокно способно функционировать при температуре до +200 градусов. Потому его можно монтировать даже на потолке парилки, где обычно поддерживается самая высокая температура.
  2. Влагостойкость . Оптоволоконную систему применяют для подсветки бассейна из-за устойчивости к высокой влажности.
  3. Мягкий свет . Такой светильник не нуждается в установке дополнительных абажуров. Его свет - рассеянный, не режет глаз.
  4. Компактность . Система освещения может монтироваться прямо в обшивку. Специально для нее не нужно выделять место.
  5. Безопасность . Оптоволокно проводит только излучение (не ток), а потому его монтаж в парилке абсолютно безопасен. Благодаря специфике крепления о волоконный жгут нельзя обжечься.
  6. Долговечность . Замену этого типа подсветки требуется осуществлять намного реже, чем его аналогов.
  7. Простота установки . Монтаж проектора, линз и волокон можно осуществить своими руками, даже не имея особых технических навыков.
  8. Изобилие дизайнерских решений . С помощью жгута можно создать анимацию звездного неба, северного сияния, костра, волн, бури. В комплект входят насадки различных цветов, что способны изменять наклон освещения для воплощения оригинальных стилевых идей. Кроме того, жгут - гибкий, что позволяет придавать ему желаемую форму.
  9. Экономичность . Оптоволокно потребляет значительно меньше энергии, чем другие типы освещения.

К недостаткам таких светильников можно отнести сравнительно высокую стоимость.

Элементы оптоволоконной системы освещения для бани


Завершенное, эффектное и приятное оптоволоконное освещение для бани можно создать, дополняя волокна специальными кристаллами и линзами. Оригинально будет выглядеть комбинация оптических жгутов с другими видами подсветки, например, светодиодной. В парилке светопроводами отделывают основные элементы, такие как полки и лавки.

Вы можете купить оптоволоконные светильники для бани в комплекте, а можете отдельно подбирать компоненты системы:

  • Проектор . От его мощности зависит выделяемое количество света. В устройстве используются галогенные лампы мощностью 12 В. Каждая из них потребляет 50 В и отличается высокой светоотдачей.
  • Волокна . От их диаметра также зависит количество выделяемого света. При правильном подборе можно создать направленное, общее или акцентирующее освещение в бане. Для установки в парной следует выбирать модели в стеклянной, а не пластиковой оболочке. Они лучше функционируют при высокой температуре и легче выдерживают перепады. При подборе учтите, что существуют жгуты бокового и торцевого свечений. Первый тип можно переплетать между собой и создавать световые рисунки. Второй же устанавливают точечно, например, имитируя звездное небо.
  • Оконечные изделия . Это линзы, светильники и кристаллы, которые фиксируют на краях светопроводов. Именно от них будет зависеть направленность света, его яркость. Традиционно конец оптоволокна рассеивает свет под углом 40-60 градусов. Если же прикрепить линзовую насадку, то угол преломления может достигать 20-25 градусов. При использовании декоративных хрустальных насадок свет фокусируется в пучок под углом 180 и больше градусов.
  • Аксессуары . Цветовые диски позволяют создавать оригинальную имитацию сияния и мерцания в помещении.
Покупая оптоволоконные светильники для сауны и бани, убедитесь, что охлаждение в проекторе не осуществляется шумными вентиляторами, а само изделие оснащено термопредохранителем. Что касается светопроводов, то у них должен быть герметичен общий ввод, а все оконцевания и соединения выполнены без клея. Выбирайте только сертифицированную продукцию у проверенных поставщиков. Она безопасна, качественна и долговечна.

Оптоволоконная система бокового свечения в бане


Принцип работы такой системы освещения предельно прост: проектор устанавливается за пределами парилки, пучок волокон передает свет, очищенный от инфракрасного и ультрафиолетового излучений. Осуществить монтаж можно самостоятельно, ведь он не требует составления электросхем.

Для этого действуем в такой последовательности:

  1. Монтируем в предбаннике проектор. Выбирайте место у стены, граничащей с парилкой. Он должен размещаться на безопасном расстоянии от источника тепла, если он расположен в этом же помещении.
  2. Устанавливаем на проектор при желании цветовые диски.
  3. Отмечаем в парилке места монтажа световодов, согласно заранее подготовленной схеме.
  4. Фиксируем отрезками оптоволоконные элементы. Учтите, в волокне находится гибкая световедущая жила с высоким показателем светопреломления. Если ее необходимо отрезать, то делаем эту процедуру только горячим ножом, после чего тщательно шлифуем срез, чтобы он получился зеркальным.
  5. При желании оснащаем систему линзовыми цветовыми насадками. Управлять этим эффектом можно в ручном режиме или автоматическом. В последнем случае дополнительно устанавливаем переключатель.
Обратите внимание! Фокусное расстояние при установке должно составлять от 85%. Также учтите, что каждый светопровод имеет свой допустимый показатель перегиба, который зависит от диаметра изделия. Это нужно продумать при составлении схемы монтажа. Чтобы световой поток распределялся равномерно, жгуты можно смешивать от разных кабелей.

Оптоволоконная система торцевого свечения для бани


Прежде чем приступать к работам, нужно составить схему размещения точечных элементов в помещении. Лучше монтировать такое освещение до проведения внутренней отделки.

Работаем в таком порядке:

  • От проектора отмеряем расстояние до каждой точки свечения и нарезаем жгуты соответствующей длины.
  • Укладываем волокна, фиксируя их временно скотчем.
  • В местах выхода устанавливаем дюбеля таким образом, чтобы они торчали на 2-3 см наружу. К ним прикрепляем жгуты с помощью проволоки или хомутов. Это нужно для соблюдения рисунка и вертикальной фиксации расположения.
  • Обшиваем поверхность, в процессе удаляя ненужные дюбеля и скотч.
  • Обрезаем волокно по уровню обшивки и шлифуем мелкозернистой шлифовальной бумагой.
  • Обрезаем и шлифуем обратные торцы, собираем их в коннектор и подключаем к проектору.
Обязательно следите в процессе за изгибом светопроводов. После монтажа можно дополнительно оснастить систему линзами или кристаллами.

По такой же схеме светопроводы можно крепить в моечном отделении. Если в нем есть бассейн, то такой тип подсветки будет выглядеть очень эффектно на его дне. В комнате отдыха оптоволоконные светильники можно совмещать с другими осветительными приборами. Светопроводы в этом помещении могут использоваться для подсветки отдельных элементов, например, зеркала или потолка. С их помощью можно создавать оптимальную атмосферу для релаксации.


Смотрите видео о системе оптоволоконного освещения:


Установить в парилке оптоволоконные светильники для бани своими руками несложно. Главное, придерживаться инструкции и грамотно подобрать комплектующие.

Сегодня будет научно-познавательный пост:)

К счастью, в этот раз была не авария, а плановые работы, поэтому процесс проходил, можно сказать, в тепличных условиях.

Обычно оптический кабель разваривается на специальный кросс, каждое волокно на свой порт, откуда уже коммутируется с оборудованием или другим кроссом. Но в этот раз надо было сварить между собой два кабеля в обход оптических кроссов. Процесс, в общем-то, схож со сваркой кабеля при разрыве, за тем исключением, что кабель не надо сначала вытаскивать из кросса.

Вот так выглядят два рабочих оптических кросса, от которых надо будет избавиться и состыковать кабели напрямую. Сейчас пока данные бегают по желтым патч-кордам между кроссами.

Оптический кросс изнутри. Аккуратно распутываем и вытаскиваем кабель из кассеты.

Цветные проводки - это оптоволокно из кабеля, только пока в изоляции. Само оптоволокно бесцветное, а изоляцию специально делают цветной, чтобы различать волокна.

Волокон в кабеле может быть много. Может быть и 4, и 12, и 38. Как правило, для передачи данных используется пара волокон, по одному волокну в каждом направлении. По такой одной паре может передаваться от 155 Мбит/с до нескольких десятков Гбит/c, в зависимости от оборудования на концах волоконно-оптической трассы.

В этом кабеле 12 волокон, которые упакованы по 4 штуки в 3 цветных (белый, зеленый, рыжий) модуля.

Поскольку место сварки волокна - потенциально ломкая зона, эту часть кабеля упаковывают в оптическую муфту. Перед сваркой кабели заводят в муфту через специальные отверстия.

Теперь можно приступить к процессу сварки. Сначала с волокна при помощи точных инструментов снимается изоляция, и обнажается сам оптоволоконный стержень.

Перед сваркой нужно, чтобы торец волокна был максимально ровным, т.е. необходим очень точный перпендикулярный срез. Для этого есть специальная машинка.

Чик! Угол скола должен отклоняться от плоскости не более, чем на 1 градус. Обычные значения - от 0,1 до 0,3 градуса.

Обрезки чистого волокна тут же прибираются. На столе его фиг потом найдешь, а под кожу оно запросто может впиться, там обломиться и остаться.

А вот и самый главный аппарат в этом процессе - сварочник. Оба волокна укладываются в специальные пазы в середине аппарата с двух сторон (на картинке - голубого цвета), и фиксируются зажимами.

После этого самое сложное. Нажимаем кнопку "SET" и смотрим на экранчик. Аппарат сам позиционирует волокна, выравнивает их, кратковменной электрической дугой мгновенно спаивает волокна и показывает результат. Весь процесс происходит быстрее, чем я написал эти три предложения выше, и занимает секунд 10.

На волокно одевается термоусадочная трубочка с металлическим стержнем, чтобы укрепить место сварки, и волокно помещается в печку в том же самом аппарате, только уже в верхней его части.

Каждое волокно затем аккуратно укладывается в кассету муфты. Творческий процесс.

И результат.

Для герметизации места ввода кабеля в муфту одеваются термоусадочные трубки, которые обрабатываются специальным феном. Трубка от высокой температуры сжимается, препятствуя доступу воды и воздуха в муфту.

И последний штрих. На муфту одевается колпак и фиксируется специальными застежками. Теперь не страшна ни влажность, ни жара, ни мороз. Такие муфты могут годами плавать в болоте без ущерба для кабеля внутри.

Весь процесс сварки двух 12-волоконных кабелей вместе занимает около полутора часов.

Ну вот, теперь вы знаете все тонкости этого процесса, можно смело покупать аппарат для сварки и опутывать оптоволоконными сетями все, что вам вздумается.

Многие зададутся вопросом - зачем делать светодиодную люстру своими руками, если такую вещь можно купить в магазине?
Отчасти этот вопрос действительно справедлив. Существуют недорогие китайские люстры, которые легче приобрести в готовом виде т.к. выигрыш в цене от самодельного изготовления такой вещи будет всё равно не таким уж существенным.

Однако совсем по-другому обстоят дела с дорогими большими моделями, такими, какие вы можете увидеть в хороших ресторанах, отелях или театрах. Их цена чаще всего лежит в диапазоне от 60 000 рублей и более. Во многих случаях эта сумма может оказаться неподъёмной. В то же время себестоимость такого изделия вполне может уложиться в 3000 - 6000.

Кроме того, возникают ситуации, когда для оформления интерьера требуется абсолютно индивидуальный подход, и ни одна покупная стандартная модель просто не будет смотреться.

В общем, иногда делать люстру самому может быть очень выгодно.

Сегодня мы рассмотрим небольшой пример, целью которого не являлось сделать шедевр. Нам просто хотелось бы показать несколько интересных практических приёмов в этом вопросе. Зная их, вы можете придумать свой интересный дизайн и воплотить его в жизнь.

Итак - нам потребуется:
1) Пластина оргстекла чёрного цвета 50см на 50 см
2) Штук 200 прозрачных стеклянных шариков
3) Ргб светодиоды
4) Контроллер для светодиодов
5) Термоусадка
6) Блок питания
7) Клей
8) Оптоволокно
9) Лист фанеры
10) Изолента, розетка и ряд других мелочей, список которых напрямую зависит от вашей задумки.

Первым делом разметим на фанере основу нашей люстры. В рассматриваемом случае это будет круг. Аккуратно вырезаем его, монтируем туда розетку и подключаем блок питания. В нашем случае мы использовали розетку аналогичную той, что имеется на обратной стороне системного блока компьютера. Этот выбор, по сути, ни чем не обусловлен - вы можете использовать любой другой вариант.



Затем делаем крепление для нашей люстры и отрезаем цепочки нужной длины, висеть она будет именно на них. Вырезаем второй фанерный круг и очень ровный круг из орг стекла, так чтобы он был миллиметров на 5 побольше, чем фанерный. Затем мы соединим их воедино. Этот шаг нужен, чтобы укрепить орг стекло, которое не рассчитано на нагрузки.

Теперь мы имеем один фанерный круг и одни двухслойный (фанера + оргстекло). Это основа нашей люстры.


Соединим эти 2 уровня небольшими аккуратными дощечками, чтобы получилось некоторое подобие цилиндра.






Размечаем круг концентрическими окружностями, обозначив тем самым контуры, где будут расположены шарики.

Насверливаем небольшие дырочки там, где будут находиться центры шариков.




Теперь нужно собрать коробочку в которой свет от РГБ светодиода будет переходить в оптоволокно. В примере мы использовали 12 Вольтовый светодиод, однако в реальной жизни мы бы посоветовали поставить 4 последовательно подключенных РГБ светодиода на 3 Вольт. Подключаем к светодиодам контроллер.

В качестве зажима для оптоволокна используем пластиковый фитинг.


Приступаем к подготовке шариков, в каждом из которых следует просверлить не сквозное отверстие приблизительно до центра. Это непростое дело, требующее довольно много времени. Лучше всего воспользоваться дремелем. Также важно продумать вопрос крепления шарика в процессе сверления.


Главной особенностью нашего проекта является использование оптоволокна. Именно им далее и займёмся. Очень аккуратно нарезаем волокно.
ВНИМАНИЕ! Учитывайте тот факт, что помимо длины волокна от шарика до оргстекла должен быть некоторый запас на подключение к светодиоду.

В нашем случае размеры получились следующие

7 нитей 75см + 10 см = 85см
21 нить 60см + 15 см = 75 см
35 нитей 45см + 20 см = 65 см
50 нитей 30 см + 25см = 55см
64 нити 15 см + 30 см = 45см





Собираем оптоволокно в пучок, надеваем на конец термоусадочную трубку, упираем пучок в стол (в результате все волокна будут на одном и том же уровне), нагреваем термоусадку так, чтобы она плотно сжала волокна друг к другу. Получается как бы «метёлка» с ручкой. Закрепляем сжатый термоусадкой конец в фитинге и разводим волокна по просверленным в орг стекле дырочкам.

Налейте немного клея на бумажку, обмокните в него зубочистку и аккуратно обмажьте отверстие в шарике. Вставьте туда волокно и временно закрепите соединение скотчем. Дайте немного времени, чтобы всё застыло. Проверьте прочность соединения. Важно исключить возможность того, чтобы шарик отвалился.


Подвешиваем люстру вместе с шариками и аккуратнейшим образом регулируем длины волокон для каждого шарика. Нужно достичь того, чтобы шарики висели идеально на запланированном уровне. Закрепляем правильное положение оптоволокна термоклеем.

Затем делаем бока для нашего цилиндра.



Всё! В итоге мы имеем оригинальную люстру со светящимися шариками, которые могут менять свой цвет в зависимости от нажатой вами кнопки на пульте. Также в вашем распоряжении окажется множество любопытных эффектов.











Эта идея кажется нам очень перспективной и имеет несколько расширений, например:

Очевидно, что в описанной выше схеме обычным светом она не светит и может быть лишь элементом декора. Но никто не мешает Вам сделать самостоятельно боле полную версию, добавив в неё обычные белые светодиоды.

Можно сделать так, чтобы внешние кольца шариков светились одним цветом (например, красным), а внутренние были с управляемым цветом. Получится очень красивая разноцветная люстра. В этом случае вам потребуется сделать несколько фитингов, в каждый из которых будет светить свой цвет.

В общем, данный подход предоставляет по настоящему широкое поле для манёвра!

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением. Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА. При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Читайте так же